Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1340427, 2023.
Article in English | MEDLINE | ID: mdl-38328583

ABSTRACT

Introduction: Recurrent urinary tract infections (RUTIs) caused by uropathogenic Escherichia coli are costly public health problems impacting patients' quality of life. Aim: In this work, a comparative genomics analysis of three clinical RUTI strains isolated from bladder biopsy specimens was performed. Materials and methods: One hundred seventy-two whole genomes of urinary tract E. coli strains were selected from the NCBI database. The search for virulence factors, fitness genes, regions of interest, and genetic elements associated with resistance was manually carried out. The phenotypic characterization of antibiotic resistance, haemolysis, motility, and biofilm formation was performed. Moreover, adherence and invasion assays with human bladder HTB-5 cells, and transmission electron microscopy (TEM) were performed. Results: The UTI-1_774U and UTI-3_455U/ST1193 strains were associated with the extraintestinal pathotypes, and the UTI-2_245U/ST295 strain was associated with the intestinal pathotype, according to a phylogenetic analysis of 172 E. coli urinary strains. The three RUTI strains were of clinical, epidemiological, and zoonotic relevance. Several resistance genes were found within the plasmids of these strains, and a multidrug resistance phenotype was revealed. Other virulence genes associated with CFT073 were not identified in the three RUTI strains (genes for type 1 and P fimbriae, haemolysin hlyA, and sat toxin). Quantitative adherence analysis showed that UTI-1_774U was significantly (p < 0.0001) more adherent to human bladder HTB-5 cells. Quantitative invasion analysis showed that UTI-2_245U was significantly more invasive than the control strains. No haemolysis or biofilm activity was detected in the three RUTI strains. The TEM micrographs showed the presence of short and thin fimbriae only in the UTI-2_245U strain. Conclusion: The high variability and genetic diversity of the RUTI strains indicate that are a mosaic of virulence, resistance, and fitness genes that could promote recurrence in susceptible patients.

3.
PLoS One ; 13(10): e0204934, 2018.
Article in English | MEDLINE | ID: mdl-30286185

ABSTRACT

The Hospital Infantil de México Federico Gómez (HIMFG) is a tertiary care hospital in Mexico City where Escherichia coli is frequently isolated from the urine samples of pediatric patients with urinary tract infections. A collection of 178 urinary Escherichia coli (UEc) isolates associated with complicated and uncomplicated urinary tract infections were evaluated in this study. The patterns of resistance to 9 antibiotic classes showed that 60.7% of the UEc isolates had a highly multidrug-resistant (MDR) profile. Genetic diversity analyses of the UEc isolates showed a high variability and revealed 16 clusters associated with four phylogenetic groups, namely, groups A, B1, B2, and D. Phylogenetic group B2 was widely associated with the 16 clusters as well as with virulence and fitness genes. The virulence and fitness genes in the UEc isolates, which included fimbriae-, siderophore-, toxin-, and mobility-associated genes, were grouped as occurring at a low, variable, or high frequency. Interestingly, only the papF gene could be amplified from some UEc isolates, and the sequence analysis of the pap operon identified an insertion sequence (IS) element and gene loss. These data suggested pathoadaptability and the development of immune system evasion, which was confirmed by the loss of P fimbriae-associated agglutination in the UEc isolates. E. coli clone O25-ST131 had a prevalence of 20.2% among the UEc isolates; these isolates displayed both a highly MDR profile and the presence of the papGII, fimH, papGIII, iutD, sat, hlyA, and motA genes. In conclusion, the UEc isolates from complicated urinary tract infection (cUTI) were characterized as being MDR, highly genetically diverse, and associated with phylogenetic group B2 and many virulence and fitness genes. Additionally, gene loss and IS elements were identified in some UEc isolates identified as clone O25-ST131.


Subject(s)
Escherichia coli/isolation & purification , Escherichia coli/physiology , Urinary Tract Infections/complications , Urinary Tract Infections/microbiology , Anti-Bacterial Agents/pharmacology , Child , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Female , Genetic Loci/genetics , Genetic Variation , Humans , INDEL Mutation , Male , Mexico , Phylogeny , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...